Computation of Richelot isogeny chains

Sabrina Kunzweiler
Ruhr-Universität Bochum
December 14, 2022
Talk at the Workshop Ciao 2022.

Genus-2 curves and their
Jacobians

Genus-2 curves

A genus-2 curve \mathcal{C} over a field K with $\operatorname{char}(K) \neq 2$ is a curve defined by an equation of the form

$$
\mathcal{C}: y^{2}=f(x),
$$

where $f \in K[x]$ is a square-free polynomial of degree 5 or 6 .
We call $y^{2}=f(x)$ a hyperelliptic equation for \mathcal{C}.

Figure 1: $y^{2}=x\left(x^{2}-1\right)\left(x^{2}-4\right)$
Figure 2: $y^{2}=x\left(x^{2}-1\right)\left(x^{2}-4\right)(x-3)$

Hyperelliptic Equations

- A coordinate transformation

$$
t: x \mapsto x^{\prime}=\frac{a x+b}{c x+d}, y \mapsto y^{\prime}=\frac{e y}{(c x+d)^{3}}
$$

with $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G L(K), e \in K \backslash\{0\}$ allows to move between different hyperelliptic equations.

We introduce two types of hyperelliptic equations:
Type 1: $y^{2}=E x\left(x^{2}-A x+1\right)\left(x^{2}-B x+C\right)$
Type 2: $y^{2}=\left(x^{2}-1\right)\left(x^{2}-A\right)\left(E x^{2}-B x+C\right) \quad|00|$
with coefficients $A, B, C, E \in K$.

- The existence of Type-1 and Type-2 equations over K is equivalent.
- For $\mathcal{C}: y^{2}=f(x)$ over a finite field K : If f splits over K, then \mathcal{C} admits equations of Type 1 and 2 .

Points of genus-2 curves

The set of points of a hyperelliptic curve $\mathcal{C}: y^{2}=f(x)$ is given by

$$
\mathcal{C}(\bar{K})=\left\{(u, v) \in \bar{K}^{2} \mid v^{2}=f(u)\right\} \cup \underbrace{ \begin{cases}\{\infty\} & \text { if } \operatorname{deg}(f)=5 \\ \left\{\infty_{+}, \infty_{-}\right\} & \text {if } \operatorname{deg}(f)=6\end{cases} }_{\text {affine points }} .
$$

The Weierstrass points of \mathcal{C} are the points fixed by the hyperelliptic involution τ, defined as $\tau(u, v)=(u,-v)$ and $\tau\left(\infty_{ \pm}\right)=\infty_{\mp}$, resp. $\tau(\infty)=\infty$.

- Every genus-2 curve has precisely 6 Weierstrass points.

(1) In contrast to elliptic curves, the set $\mathcal{C}(\bar{K})$ is not a group.

The Jacobian of a genus-2 curve

We write $\mathcal{J}(\mathcal{C})$ for the Jacobian variety of a genus-2 curve.

- It is a a principally polarized abelian variety of dimension 2 .
- As groups: $\mathcal{J}(\mathcal{C})(L)=\operatorname{Pic} c_{\mathcal{C}}^{0}(L)$ for any field extension L / K.
- Any $R \in \mathcal{J}(\mathcal{C})$ has a unique presentation $R=\left[P_{1}+P_{2}-D_{\infty}\right]$, where $P_{1}, P_{2} \in \mathcal{C}(\bar{K})$ with $\tau\left(P_{1}\right) \neq \tau\left(P_{2}\right)$ and

$$
D_{\infty}= \begin{cases}2 \cdot \infty & \text { if } \operatorname{deg}(f)=5 \\ \infty_{+}+\infty_{-} & \text {if } \operatorname{deg}(f)=6\end{cases}
$$

Mumford presentation

$R=J(a, b)$
For $P_{1}=\left(u_{1}, v_{1}\right), P_{2}=\left(u_{2}, v_{2}\right)$, define $a=\left(x-u_{1}\right)\left(x-u_{2}\right)$ and $b=b_{1} x+b_{0}$ so that $b\left(u_{1}\right)=v_{1}$ and $b\left(u_{2}\right)=v_{2}$.

Figure 3: Element $J\left(x^{2}+x-2,0\right)$

Isogenies of Jacobians of genus-2 curves

Torsion elements

Consider $\mathcal{C}: y^{2}=f(x)$ over a finite field K with $\operatorname{char}(K)=p$.

- $\mathcal{J}(\mathcal{C})[m] \cong(\mathbb{Z} / m \mathbb{Z})^{4}$ for $m \in \mathbb{N}$ with $p \nmid m$.
- The Weil pairing

$$
e_{m}: \mathcal{J}(\mathcal{C})[m] \times \mathcal{J}(\mathcal{C})[m] \rightarrow \boldsymbol{\mu}_{m} .
$$

is a bilinear, alternating pairing.
Example: $m=2, f=\prod_{i=1}^{6}\left(x-r_{i}\right)$

- $\mathcal{J}(\mathcal{C})[2] \backslash\{0\}=\left\{J\left(\left(x-r_{i}\right)\left(x-r_{j}\right), 0\right) \mid i \neq j\right\}$.
\Rightarrow Correspondence between pairs of Weierstrass points of \mathcal{C} and 2-torsion elements of $\mathcal{J}(\mathcal{C})$.
- $e_{2}\left(J\left(\left(x-r_{i}\right)\left(x-r_{j}\right), 0\right), J\left(\left(x-r_{k}\right)\left(x-r_{l}\right), 0\right)\right)$
$= \begin{cases}-1 & \text { if }|\{i, j\} \cap\{k, l\}|=1, \\ 1 & \text { otherwise. }\end{cases}$

General isogenies

Consider $\mathcal{J}(\mathcal{C})$ over K with $\operatorname{char}(K)=p$ and let $\ell \neq p$ prime.

- An (ℓ, ℓ)-isogeny is an isogeny $\phi: \mathcal{J}(\mathcal{C}) \rightarrow \mathcal{A}=\mathcal{J}(\mathcal{C}) / G,{ }^{1}$ where $G \cong(\mathbb{Z} / \ell \mathbb{Z})^{2}$ and $e_{\left.\ell\right|_{G}} \equiv i d$.
$\Rightarrow G$ is called maximal ℓ-isotropic.
- Non-backtracking composition of (ℓ, ℓ)-isogenies:

$$
\mathcal{J}(\mathcal{C}) \rightarrow \mathcal{A}_{1} \rightarrow \cdots \rightarrow \mathcal{A}_{n}
$$

For $G=\operatorname{ker}\left(\mathcal{J}(\mathcal{C}) \rightarrow \mathcal{A}_{n}\right)$, we have that $e_{\left.\ell^{n}\right|_{G}}=i d$ and $G \cong \mathbb{Z} / \ell^{n} \mathbb{Z} \times \mathbb{Z} / \ell^{n-k} \mathbb{Z} \times \mathbb{Z} / \ell^{k} \mathbb{Z}$ for some $0 \leq k \leq n / 2$.
$\Rightarrow G$ is called maximal ℓ^{n}-isotropic.

- An $\left(\ell^{n}, \ell^{n}\right)$-isogeny is an isogeny as above, where $k=0$, i.e. $G \cong\left(\mathbb{Z} / \ell^{n} \mathbb{Z}\right)^{2}$.

[^0]
Richelot Isogenies

Let $\mathcal{C}: y^{2}=g_{1}(x) g_{2}(x) g_{3}(x)$ with $g_{i}=g_{2, i} x^{2}+g_{1, i} x+g_{0, i}$ and write $\delta=\operatorname{det}\left(\left(g_{i, j}\right)_{i, j}\right)$.

- The group $G=\left\langle J\left(g_{1}, 0\right), J\left(g_{2}, 0\right)\right\rangle=\left\{0, J\left(g_{1}, 0\right), J\left(g_{2}, 0\right), J\left(g_{3}, 0\right)\right\}$ is maximal 2 -isotropic.
- If $\delta \neq 0$, then $\mathcal{J}(\mathcal{C}) / G=\mathcal{J}\left(\mathcal{C}^{\prime}\right)$, where

$$
\mathcal{C}^{\prime}: y^{2}=h_{1}(x) h_{2}(x) h_{3}(x) \quad \text { with } h_{i}=\delta^{-1}\left(g_{i+1}^{\prime} g_{i+2}-g_{i+1} g_{i+2}^{\prime}\right)
$$

- The isogeny $\phi: \mathcal{J}(\mathcal{C}) \rightarrow \mathcal{J}\left(\mathcal{C}^{\prime}\right)$ is called Richelot isogeny and it is defined by the correspondence

$$
\begin{aligned}
\mathcal{R}: \quad 0 & =g_{1}(u) h_{1}\left(u^{\prime}\right)+g_{2}(u) h_{2}\left(u^{\prime}\right) \\
v v^{\prime} & =g_{1}(u) h_{1}\left(u^{\prime}\right)\left(u-u^{\prime}\right)
\end{aligned}
$$

for points $\left(P, P^{\prime}\right)=\left((u, v),\left(u^{\prime}, v^{\prime}\right)\right) \in \mathcal{C} \times \mathcal{C}^{\prime}$.

Richelot correspondence

Recall $\mathcal{R} \subset \mathcal{C} \times \mathcal{C}^{\prime}$.
$\mathcal{R}: \quad 0=g_{1}(u) h_{1}\left(u^{\prime}\right)+g_{2}(u) h_{2}\left(u^{\prime}\right)$

$$
v v^{\prime}=g_{1}(u) h_{1}\left(u^{\prime}\right)\left(u-u^{\prime}\right) .
$$

The correspondence induces a map $\mathcal{J}(\mathcal{C}) \rightarrow \mathcal{J}\left(\mathcal{C}^{\prime}\right)$:

$$
\left[P+Q-D_{\infty}\right] \mapsto \underbrace{\left[P_{1}+P_{2}+Q_{1}+Q_{2}-2 D_{\infty}^{\prime}\right]}_{\text {unreduced representation }}=\left[P^{\prime}+Q^{\prime}-D_{\infty}^{\prime}\right] .
$$

Richelot Isogeny Chains

Our Algorithm

Setup: A genus-2 curve

$$
\mathcal{C}: y^{2}=\left(x^{2}-1\right)\left(x^{2}-A\right)\left(E x^{2}-B x+C\right)
$$

and a (special) symplectic basis $\left(B_{1}, B_{2}, B_{3}, B_{4}\right)$ for $\mathcal{J}(\mathcal{C})\left[2^{n}\right]$.
Input: $a, b, c \in \mathbb{Z} / 2^{n} \mathbb{Z}$ defining $G=\left\langle B_{1}+a B_{3}+b B_{4}, B_{2}+b B_{3}+c B_{4}\right\rangle$.
Output: $\mathcal{J}\left(\mathcal{C}^{\prime}\right)=\mathcal{J}(\mathcal{C}) / G$. $($
(1) Restriction in our work: We will only consider isogenies where the codomain is again the Jacobian of a hyperelliptic curve. In general, one could also have $\mathcal{J}(\mathcal{C}) / G=\mathcal{E}_{1} \times \mathcal{E}_{2}$ for two elliptic curves $\mathcal{E}_{1}, \mathcal{E}_{2}$.

Our Algorithm

Computation of $\mathcal{J}(\mathcal{C}) / G$ with $G=\left\langle J_{1}, J_{2}\right\rangle \subset \mathcal{J}(\mathcal{C})\left[2^{n}\right]$.
General outline: Composition of n Richelot isogenies

where $\operatorname{ker}\left(\phi_{i}\right)=\left\langle 2^{n-i} \psi_{i-1}\left(J_{1}\right), 2^{n-i} \psi_{i-1}\left(J_{2}\right)\right\rangle$.

Step i:

- transformation to

Type-1 equation with special kernel form

- $\hat{\phi}_{i}$: application of our
(2, 2)-isogeny formula

$$
\begin{aligned}
\mathcal{J}_{i-1} & =\mathcal{J}\left(\mathcal{C}_{i-1}\right){ }^{\phi_{i}} \mathcal{J}_{i}=\mathcal{J}\left(\mathcal{C}_{i}\right) \\
& \downarrow \\
\mathcal{J}_{i-1}^{\prime} & =\mathcal{J}\left(\mathcal{C}_{i-1}^{\prime}\right)
\end{aligned}
$$

(2, 2)-isogeny formula

Theorem (K.)
Let $\mathcal{C}: y^{2}=E x\left(x^{2}-A x+1\right)\left(x^{2}-B x+C\right)$ with $C \neq 1$ and $G=\left\langle J(x, 0), J\left(x^{2}-A x+1,0\right)\right\rangle \subset \mathcal{J}(\mathcal{C})[2]$.

- Then $\mathcal{J}(\mathcal{C}) / G=\mathcal{J}\left(\mathcal{C}^{\prime}\right)$ with

$$
\mathcal{C}^{\prime}: y^{2}=\left(x^{2}-1\right)\left(x^{2}-A^{\prime}\right)\left(E^{\prime} x^{2}-B^{\prime} x+C^{\prime}\right),
$$

where $A^{\prime}=C, B^{\prime}=\frac{2}{E}, C^{\prime}=\frac{B-A C}{E(1-C)}, E^{\prime}=\frac{A-B}{E(1-C)}$.

- We provide explicit formulas for the $(2,2)$-isogeny
$\phi: \mathcal{J}(\mathcal{C}) \rightarrow \mathcal{J}\left(\mathcal{C}^{\prime}\right)$. I.e. expressions
$a_{i}^{\prime}, b_{i}^{\prime} \in K\left[A, B, C, E, a_{0}, a_{1}, a_{2}, b_{0}, b_{1}\right]$ so that
$\phi\left(J\left(a_{2} x^{2}+a_{1} x+a_{0}, b_{1} x+b_{0}\right)\right)=J\left(a_{2}^{\prime} x^{2}+a_{1}^{\prime} x+a_{0}^{\prime}, b_{1}^{\prime} x+b_{0}^{\prime}\right) \in \mathcal{J}\left(\mathcal{C}^{\prime}\right)$.

Transformation

Goal: Given $\mathcal{C}: y^{2}=f(x)$, a $(2,2)$-group $\left\langle J\left(g_{1}, 0\right), J\left(g_{2}, 0\right)\right\rangle$ and a $R \in \mathcal{J}(\mathcal{C})$ with $2 \cdot R=J\left(g_{1}, 0\right)$:
find a transformation $t:(x, y) \mapsto\left(x^{\prime}, y^{\prime}\right)$ so that

- $\mathcal{C}^{\prime}: y^{\prime 2}=E x^{\prime}\left(x^{\prime 2}-A x^{\prime}+1\right)\left(E x^{\prime 2}-B x^{\prime}+C\right)$.
- $t\left(g_{1}\right)=x^{\prime}$ and $t\left(g_{2}\right)=x^{\prime 2}-A x^{\prime}+1$.

Step 1: Factorize $g_{1}(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right), g_{2}(x)=\left(x-\beta_{1}\right)\left(x-\beta_{2}\right)$ (Note: no square-root computations necessary due to the special setup).

Step 2: Set $\hat{t}: x \mapsto \hat{x}=\frac{x-\alpha_{2}}{x-\alpha_{1}}, y \mapsto \hat{y}=\frac{y}{\left(x-\alpha_{1}\right)^{3}}$ and compute $\hat{\mathcal{C}}: \hat{y}^{2}=c_{f} \cdot \hat{x}\left(\hat{x}-\hat{\beta}_{1}\right)\left(\hat{x}-\hat{\beta}_{2}\right)\left(\hat{x}-\hat{\gamma_{1}}\right)\left(\hat{x}-\hat{\gamma}_{2}\right)$.
Step 3: Compute $a \in K$ such that satisfies $a^{2}=\frac{1}{\hat{\beta}_{1} \widehat{\beta_{2}}}$. Set $t: x \mapsto x^{\prime}=a \cdot \frac{x-\alpha_{2}}{x-\alpha_{1}}, y \mapsto y^{\prime}=\frac{y}{\left(x-\alpha_{1}\right)^{3}}$.
$>$ How to compute $\sqrt{\hat{\beta}_{1} \hat{\beta}_{2}}$? Why is it in K ?

Computing $\sqrt{\beta_{1} \beta_{2}}$

Division by 2 (Zarhin, 2016)

Let $\mathcal{C}: y^{2}=g(x)$ with $g=c_{g}(x-r) \prod_{i=1}^{4}\left(x-r_{i}\right)$ and $P=(r, 0)$.
Then any choice of square roots

$$
\mathfrak{r}=\left(\mathfrak{r}_{1}, \ldots, \mathfrak{r}_{4}\right) \in \bar{K}^{4} \quad \text { with } \mathfrak{r}_{i}^{2}=r-r_{i} \quad \text { for } i \in\{1,2,3,4\}
$$

defines a 4-torsion point $J\left(a_{\mathfrak{r}}, b_{\mathfrak{r}}\right) \in \mathcal{J}(\mathcal{C})$ with $2 \cdot J\left(a_{\mathfrak{r}}, b_{\mathfrak{r}}\right)=J(x-r, 0)$, where

$$
\begin{aligned}
a_{\mathfrak{r}} & =(x-r)^{2}-s_{2}(\mathfrak{r})(x-r)+s_{4}(\mathfrak{r}), \\
\frac{1}{\sqrt{c_{g}}} \cdot b_{\mathfrak{r}} & =\left(s_{1}(\mathfrak{r}) s_{2}(\mathfrak{r})-s_{3}(\mathfrak{r})\right)(x-r)-s_{1}(\mathfrak{r}) s_{4}(\mathfrak{r})
\end{aligned}
$$

with s_{i} the i-th elementary symmetric polynomial in $\mathfrak{r}=\left(\mathfrak{r}_{1}, \ldots, \mathfrak{r}_{4}\right)$.

Computing $\sqrt{\beta_{1} \beta_{2}}$

Proposition (K.)

Let $\mathcal{C}: y^{2}=c_{f} x\left(x-\beta_{1}\right)\left(x-\beta_{2}\right)\left(x-\gamma_{1}\right)\left(x-\gamma_{2}\right)$. If
$R=J\left(x^{2}+a_{1} x+a_{0}, b_{1} x+b_{0}\right) \in \mathcal{J}(\mathcal{C})(K)$ satisfies $2 \cdot R=J(x, 0)$, then

$$
\sqrt{\beta_{1} \beta_{2}}=\frac{\left(a_{0} b_{0} b_{1}-a_{1} b_{0}^{2}\right) \beta_{1} \beta_{2}+c_{g} a_{0}^{2}\left(a_{0}-\beta_{1} \beta_{2}\right)^{2}}{b_{0}^{2} \beta_{1} \beta_{2}+c_{g} a_{0}^{2}\left(a_{0}-\beta_{1} \beta_{2}\right)\left(-a_{1}-\beta_{1}-\beta_{2}\right)}
$$

Proof.

- Set $r=0$ and $\mathfrak{r}=\left(\sqrt{-\beta_{1}}, \sqrt{-\beta_{2}}, \sqrt{-\gamma_{1}}, \sqrt{-\gamma_{2}}\right)$.
- Extract $s_{i}(\mathfrak{r})$ from the Mumford coordinates of R.
- Use that $\mathfrak{r}_{1} \mathfrak{r}_{2}=\frac{s_{1}(\mathfrak{r}) s_{3}(\mathfrak{r}) \mathbf{r}_{1}^{2} \mathbf{r}_{2}^{2}+\left(s_{4}(\mathfrak{r})-\mathbf{r}_{1}^{2} \mathbf{r}_{2}^{2}\right)^{2}}{\mathbf{r}_{1}^{2} \mathbf{r}_{2}^{2} s_{1}(\mathfrak{r})^{2}+\left(s_{4}(\mathbf{r})-\mathbf{r}_{1}^{2} \mathbf{r}_{2}^{2}\right)\left(s_{2}(\mathfrak{r})+\mathfrak{r}_{1}^{2} \mathfrak{r}_{2}^{2}\right)}$.

Performance

We compare our algorithm to other implementations on a typical G2SIDH instance with $\log (p) \approx 100$ and compute a $\left(2^{51}, 2^{51}\right)$-isogeny.

	pure isogeny	with image points
Genus-2 SIDH [FT '19]	72	127
SIDH-Attack [CD '22]	0.16	0.26
L sagemath [PO '22]	0.4	0.6
This work	0.06	0.08
L sagemath	0.17	0.23

Table 1: Runtime in seconds on a laptop with Intel i7-8565U processor
Code and verification of all formulas:
https://github.com/sabrinakunzweiler/richelot-isogenies

Richelot Isogeny Chains on the Kummer Surface

Kummer Surface

For a genus-2 curve $\mathcal{C}: y^{2}=f(x)$, the Kummer surface is defined as $\mathcal{K}(\mathcal{C})=\mathcal{J}(\mathcal{C}) /\langle \pm 1\rangle$.

- Quartic surface in \mathbb{P}^{3}.
- 16 singular points corresponding to the 2 -torsion points of $\mathcal{J}(\mathcal{C})$.
- Quotient map: $\xi: \mathcal{J}(\mathcal{C}) \rightarrow \mathcal{K}(\mathcal{C})$,

$$
\left[\left(x_{1}, y_{1}\right)+\left(x_{2}, y_{2}\right)-D_{\infty}\right] \mapsto\left[1: x_{1}+x_{2}: x_{1} x_{2}: \frac{\phi\left(x_{1}, x_{2}\right)-2 y_{1} y_{2}}{\left(x_{1}-x_{2}\right)^{2}}\right]
$$ where ϕ is a polynomial depending on f.

Example:

Let $\mathcal{C}: y^{2}=\left(x^{2}-1\right)\left(x^{2}-A\right)\left(x^{2}-B x+C\right)$ be Type-2, then

- $\mathcal{K}(\mathcal{C}):\left(\xi_{1}^{2}-4 \xi_{0} \xi_{2}\right) \cdot \xi_{3}^{2}-2\left(\left(2 C \xi_{0}-B \xi_{1}+2 E \xi_{2}\right)\left(-A \xi_{0}+\xi_{2}\right)\left(-\xi_{0}+\xi_{2}\right)\right) \cdot \xi_{3}$ $+\psi\left(\xi_{0}, \xi_{1}, \xi_{2}\right)$.
- $\xi: J\left(x^{2}-1,0\right) \mapsto[1: 0:-1:(A+1)(C-E)]$,
$\xi: J\left(x^{2}-A, 0\right) \mapsto[1: 0:-A:(A+1)(C-A E)]$.

Richelot Isogeny on the Kummer Surface

Proposition (K.)

Let $\mathcal{C}: y^{2}=\left(x^{2}-1\right)\left(x^{2}-A\right)\left(E x^{2}-B x+C\right)$ with $B \neq 0$ and
$G=\left\langle J\left(x^{2}-1,0\right), J\left(x^{2}-A, 0\right)\right\rangle \subset \mathcal{J}(\mathcal{C})[2]$.

- Then $\mathcal{J}(\mathcal{C}) / G=\mathcal{J}\left(\mathcal{C}^{\prime}\right)$ with

$$
\begin{aligned}
& \mathcal{C}^{\prime}: y^{2}=E^{\prime} x\left(x^{2}-A^{\prime} x+1\right)\left(x^{2}-B^{\prime} x+C^{\prime}\right) \text { and } \\
& A^{\prime}=2 \frac{E+C}{B}, B^{\prime}=2 \frac{A E+C}{B}, C^{\prime}=A, E^{\prime}=2 B .
\end{aligned}
$$

- We provide explicit formulae for the induced map $\phi: \mathcal{K}(\mathcal{C}) \rightarrow \mathcal{K}\left(\mathcal{C}^{\prime}\right)$.

```
def KummerRichelot(coefficients, point):
    [A,B,C,E] = coefficients
    [x0,x1,x2,x3] = point
    y0 = (A*(E-C) - C)*x0^2 + C*x1~2 - B*x1*x2 + E*x2~2 + x0*x3
    y1 = A*B*x0^2 -2 (A*(C + E) + C)*x0*x1 + 2(A*E + C)*(C + E)/B*x1~2
    + B*(A + 1)*x0*x2 - 2*(A*E + C - E)*x1*x2 + B*x2^2 + x1*x3
    y2 = A*C*x0^2 - A*B*x0*x1 + A*E*x1^2 - (A*E - C + E)*x2^2 + x2*x3
    y3 = (A^2*(4*E^2 - B^2) - A*B^2)*x0^2 + A*B^2*x1^2 + 4*A*(2*C*E - A*B)*x0*x2
    - ((A + 1)*B^2 - 4*C^2)*x2^2 + 4*A*E*x0*x3 + 4*C*x2*x3 + x3^2
    return [y0,y1,y2,y3]
```


Thank you!

[^0]: ${ }^{1}$ In general, \mathcal{A} is a principally polarized abelian surface. In most cases this is again the Jacobian of a genus- 2 curve \mathcal{C}^{\prime}.

