
Computation of Richelot isogeny chains

Sabrina Kunzweiler
Ruhr-Universität Bochum

December 14, 2022

Talk at the Workshop Ciao 2022.

1



Genus-2 curves and their
Jacobians



Genus-2 curves

A genus-2 curve C over a field K with char(K) 6= 2 is a curve defined
by an equation of the form

C : y2 = f(x),

where f ∈ K[x] is a square-free polynomial of degree 5 or 6.

We call y2 = f(x) a hyperelliptic equation for C.

Figure 1: y2 = x(x2 − 1)(x2 − 4) Figure 2: y2 = x(x2 − 1)(x2 − 4)(x− 3)
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Hyperelliptic Equations

• A coordinate transformation

t : x 7→ x′ =
ax+ b

cx+ d
, y 7→ y′ =

ey

(cx+ d)3

with
(
a b

c d

)
∈ GL(K), e ∈ K \ {0} allows to move between

different hyperelliptic equations.

We introduce two types of hyperelliptic equations:

Type 1: y2 = E x(x2 −Ax+ 1)(x2 −Bx+ C)

Type 2: y2 = (x2 − 1)(x2 −A)(Ex2 −Bx+ C)

with coefficients A,B,C,E ∈ K.

ä The existence of Type-1 and Type-2 equations over K is equivalent.

ä For C : y2 = f(x) over a finite field K: If f splits over K, then C
admits equations of Type 1 and 2.
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Points of genus-2 curves

The set of points of a hyperelliptic curve C : y2 = f(x) is given by

C(K̄) = {(u, v) ∈ K̄2 | v2 = f(u)}

affine points

∪

{
{∞} if deg(f) = 5

{∞+,∞−} if deg(f) = 6

point(s) at infinity

.

The Weierstrass points of C are the points fixed by the hyperelliptic
involution τ , defined as τ(u, v) = (u,−v) and τ(∞±) =∞∓, resp.
τ(∞) =∞.

• Every genus-2 curve has precisely 6 Weierstrass points.

V In contrast to elliptic curves, the set C(K̄) is not a group.
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The Jacobian of a genus-2 curve

We write J (C) for the Jacobian variety of a genus-2 curve.

• It is a a principally polarized abelian variety of dimension 2.
• As groups: J (C)(L) = Pic0C(L) for any field extension L/K.
• Any R ∈ J (C) has a unique presentation R = [P1 + P2 −D∞],

where P1, P2 ∈ C(K̄) with τ(P1) 6= τ(P2) and

D∞ =

{
2 · ∞ if deg(f) = 5,

∞+ +∞− if deg(f) = 6.

Mumford presentation
R = J(a, b)

For P1 = (u1, v1), P2 = (u2, v2),
define a = (x− u1)(x− u2) and
b = b1x+ b0 so that b(u1) = v1
and b(u2) = v2.

Figure 3: Element J(x2 + x− 2, 0) 5



Isogenies of Jacobians of
genus-2 curves



Torsion elements

Consider C : y2 = f(x) over a finite field K with char(K) = p.

• J (C)[m] ∼= (Z/mZ)4 for m ∈ N with p - m.

• The Weil pairing

em : J (C)[m]× J (C)[m]→ µµµm.

is a bilinear, alternating pairing.

Example: m = 2, f =
∏6
i=1(x− ri)

• J (C)[2] \ {0} = {J ((x− ri)(x− rj), 0) | i 6= j}.
⇒ Correspondence between pairs of Weierstrass points of C and
2-torsion elements of J (C).

• e2 (J ((x− ri)(x− rj), 0) , J ((x− rk)(x− rl), 0))

=

{
−1 if | {i, j} ∩ {k, l} |= 1,

1 otherwise.
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General isogenies

Consider J (C) over K with char(K) = p and let ` 6= p prime.

• An (`, `)-isogeny is an isogeny φ : J (C)→ A = J (C)/G, 1 where
G ∼= (Z/`Z)2 and e`|G ≡ id.
⇒ G is called maximal `-isotropic.

• Non-backtracking composition of (`, `)-isogenies:

J (C)→ A1 → · · · → An.
For G = ker(J (C)→ An), we have that e`n |G = id and
G ∼= Z/`nZ× Z/`n−kZ× Z/`kZ for some 0 ≤ k ≤ n/2.
⇒ G is called maximal `n-isotropic.

• An (`n, `n)-isogeny is an isogeny as above, where k = 0, i.e.
G ∼= (Z/`nZ)2.

1In general, A is a principally polarized abelian surface. In most cases this is again
the Jacobian of a genus-2 curve C′.
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Richelot Isogenies

Let C : y2 = g1(x)g2(x)g3(x) with gi = g2,ix
2 + g1,ix+ g0,i and write

δ = det ((gi,j)i,j).

• The group G = 〈J(g1, 0), J(g2, 0)〉 = {0, J(g1, 0), J(g2, 0), J(g3, 0)}
is maximal 2-isotropic.

• If δ 6= 0, then J (C)/G = J (C′), where

C′ : y2 = h1(x)h2(x)h3(x) with hi = δ−1(g′i+1gi+2 − gi+1g
′
i+2).

• The isogeny φ : J (C)→ J (C′) is called Richelot isogeny and it is
defined by the correspondence

R : 0 = g1(u)h1(u′) + g2(u)h2(u′)

vv′ = g1(u)h1(u′)(u− u′)

for points (P, P ′) = ((u, v), (u′, v′)) ∈ C × C′.
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Richelot correspondence

Recall R ⊂ C × C′.

R : 0 = g1(u)h1(u′) + g2(u)h2(u′)

vv′ = g1(u)h1(u′)(u− u′).
P ′1

P ′2

C C′

P

The correspondence induces a map J (C)→ J (C′):

[P +Q−D∞] 7→ [P1 + P2 +Q1 +Q2 − 2D′∞]︸ ︷︷ ︸
unreduced representation

= [P ′ +Q′ −D′∞].
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Richelot Isogeny Chains



Our Algorithm

Setup: A genus-2 curve

C : y2 = (x2 − 1)(x2 −A)(Ex2 −Bx+ C)

and a (special) symplectic basis (B1, B2, B3, B4) for J (C)[2n].

Input: a, b, c ∈ Z/2nZ defining G = 〈B1 + aB3 + bB4, B2 + bB3 + cB4〉.

Output: J (C′) = J (C)/G. V

V Restriction in our work: We will only consider isogenies where the
codomain is again the Jacobian of a hyperelliptic curve. In general, one
could also have J (C)/G = E1 × E2 for two elliptic curves E1, E2.
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Our Algorithm

Computation of J (C)/G with G = 〈J1, J2〉 ⊂ J (C)[2n].

General outline: Composition of n Richelot isogenies

J0 = J (C0) J1 = J (C1) J2 = J (C2) . . . Jn = J (Cn).
φ1 φ2 φn

ψ2

where ker(φi) = 〈2n−iψi−1(J1), 2n−iψi−1(J2)〉.

Step i:

• transformation to
Type-1 equation with
special kernel form

• φ̂i: application of our
(2, 2)-isogeny formula

Ji−1 = J (Ci−1) Ji = J (Ci)

J ′i−1 = J (C′i−1)

φi

∼

φ̂i

11



(2, 2)-isogeny formula

Theorem (K.)
Let C : y2 = Ex(x2 −Ax+ 1)(x2 −Bx+ C) with C 6= 1 and
G = 〈J (x, 0) , J

(
x2 −Ax+ 1, 0

)
〉 ⊂ J (C)[2].

• Then J (C)/G = J (C′) with

C′ : y2 = (x2 − 1)(x2 −A′)(E′x2 −B′x+ C ′),

where A′ = C, B′ = 2
E , C

′ = B−AC
E(1−C) , E

′ = A−B
E(1−C) .

• We provide explicit formulas for the (2, 2)-isogeny
φ : J (C)→ J (C′). I.e. expressions
a′i, b

′
i ∈ K[A,B,C,E, a0, a1, a2, b0, b1] so that

φ(J(a2x
2+a1x+a0, b1x+b0)) = J(a′2x

2+a′1x+a′0, b
′
1x+b′0) ∈ J (C′).
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Transformation

Goal: Given C : y2 = f(x), a (2, 2)-group 〈J(g1, 0), J(g2, 0)〉 and a
R ∈ J (C) with 2 ·R = J(g1, 0):
find a transformation t : (x, y) 7→ (x′, y′) so that

• C′ : y′
2

= Ex′(x′
2 −Ax′ + 1)(Ex′

2 −Bx′ + C).
• t(g1) = x′ and t(g2) = x′

2 −Ax′ + 1.

Step 1: Factorize g1(x) = (x− α1)(x− α2), g2(x) = (x− β1)(x− β2)

(Note: no square-root computations necessary due to the special setup).

Step 2: Set t̂ : x 7→ x̂ = x−α2

x−α1
, y 7→ ŷ = y

(x−α1)3
and compute

Ĉ : ŷ2 = cf · x̂(x̂− β̂1)(x̂− β̂2)(x̂− γ̂1)(x̂− γ̂2).

Step 3: Compute a ∈ K such that satisfies a2 = 1
β̂1β̂2

.

Set t : x 7→ x′ = a · x−α2

x−α1
, y 7→ y′ = y

(x−α1)3
.

ä How to compute
√
β̂1β̂2? ä Why is it in K?
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Computing
√
β1β2

Division by 2 (Zarhin, 2016)
Let C : y2 = g(x) with g = cg(x− r)

∏4
i=1(x− ri) and P = (r, 0).

Then any choice of square roots

r = (r1, . . . , r4) ∈ K̄4 with r2i = r − ri for i ∈ {1, 2, 3, 4}

defines a 4-torsion point J(ar, br) ∈ J (C) with
2 · J(ar, br) = J(x− r, 0), where

ar = (x− r)2 − s2(r)(x− r) + s4(r),

1
√
cg
· br = (s1(r)s2(r)− s3(r))(x− r)− s1(r)s4(r)

with si the i-th elementary symmetric polynomial in r = (r1, . . . , r4).
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Computing
√
β1β2

Proposition (K.)
Let C : y2 = cfx(x− β1)(x− β2)(x− γ1)(x− γ2). If
R = J(x2 + a1x+ a0, b1x+ b0) ∈ J (C)(K) satisfies 2 ·R = J(x, 0), then

√
β1β2 =

(a0b0b1 − a1b20)β1β2 + cga
2
0(a0 − β1β2)2

b20β1β2 + cga20(a0 − β1β2)(−a1 − β1 − β2)

Proof.

• Set r = 0 and r = (
√
−β1,

√
−β2,

√
−γ1,

√
−γ2).

• Extract si(r) from the Mumford coordinates of R.

• Use that r1r2 =
s1(r)s3(r)r

2
1r

2
2+(s4(r)−r21r

2
2)

2

r21r
2
2s1(r)

2+(s4(r)−r21r22)(s2(r)+r21+r22)
.
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Performance

We compare our algorithm to other implementations on a typical
G2SIDH instance with log(p) ≈ 100 and compute a (251, 251)-isogeny.

pure isogeny with image points

Genus-2 SIDH [FT ’19] 72 127
SIDH-Attack [CD ’22] 0.16 0.26

�

sagemath [PO ’22] 0.4 0.6
This work 0.06 0.08

�

sagemath 0.17 0.23

Table 1: Runtime in seconds on a laptop with Intel i7-8565U processor

Code and verification of all formulas:
https://github.com/sabrinakunzweiler/richelot-isogenies
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Richelot Isogeny Chains on the
Kummer Surface



Kummer Surface

For a genus-2 curve C : y2 = f(x), the Kummer surface is defined as
K(C) = J (C)/〈±1〉.

• Quartic surface in P3.

• 16 singular points corresponding to the 2-torsion points of J (C).
• Quotient map: ξ : J (C)→ K(C),

[(x1, y1) + (x2, y2)−D∞] 7→ [1 : x1 + x2 : x1x2 : φ(x1,x2)−2y1y2
(x1−x2)2

],
where φ is a polynomial depending on f .

Example:
Let C : y2 = (x2 − 1)(x2 −A)(x2 −Bx+ C) be Type-2, then

• K(C) :
(
ξ21 − 4ξ0ξ2

)
· ξ23 − 2 ((2Cξ0 −Bξ1 + 2Eξ2)(−Aξ0 + ξ2)(−ξ0 + ξ2)) · ξ3

+ψ(ξ0, ξ1, ξ2).

• ξ : J(x2 − 1, 0) 7→ [1 : 0 : −1 : (A+ 1)(C − E)],
ξ : J(x2 −A, 0) 7→ [1 : 0 : −A : (A+ 1)(C −AE)].
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Richelot Isogeny on the Kummer Surface

Proposition (K.)
Let C : y2 = (x2 − 1)(x2 −A)(Ex2 −Bx+ C) with B 6= 0 and
G = 〈J

(
x2 − 1, 0

)
, J
(
x2 −A, 0

)
〉 ⊂ J (C)[2].

• Then J (C)/G = J (C′) with
C′ : y2 = E′x(x2 −A′x+ 1)(x2 −B′x+ C ′) and
A′ = 2E+C

B , B′ = 2AE+C
B , C ′ = A, E′ = 2B.

• We provide explicit formulae for the induced map φ : K(C)→ K(C′).

def KummerRichelot(coefficients, point):
[A,B,C,E] = coefficients
[x0,x1,x2,x3] = point

y0 = (A*(E-C) - C)*x0^2 + C*x1^2 - B*x1*x2 + E*x2^2 + x0*x3
y1 = A*B*x0^2 -2 (A*(C + E) + C)*x0*x1 + 2(A*E + C)*(C + E)/B*x1^2
+ B*(A + 1)*x0*x2 - 2*(A*E + C - E)*x1*x2 + B*x2^2 + x1*x3
y2 = A*C*x0^2 - A*B*x0*x1 + A*E*x1^2 - (A*E - C + E)*x2^2 + x2*x3
y3 = (A^2*(4*E^2 - B^2) - A*B^2)*x0^2 + A*B^2*x1^2 + 4*A*(2*C*E - A*B)*x0*x2
- ((A + 1)*B^2 - 4*C^2)*x2^2 + 4*A*E*x0*x3 + 4*C*x2*x3 + x3^2

return [y0,y1,y2,y3]
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Thank you!
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