Isogeny-based PAKE protocols

Sabrina Kunzweiler Inria, Institut de Mathématiques Bordeaux December 08, 2023

joint work with Michel Abdalla, Thorsten Eisenhofer, Eike Kiltz and Doreen Riepel

Password-Authenticated Key Exchange

Idea: Alice and Bob want to create a secure session key. They can only communicate over a public channel.

- Everyone can read the messages x_A , x_B .
- Only Alice and Bob can compute the shared key K_{AB} .

Setup: (\mathbb{G}, \cdot) is a group of prime order p, and g a generator of \mathbb{G} .

Cryptographic assumptions:

The following problems are assumed to be hard.

- **DLOG** Given x_A , g, find a.
- **CDH** Given g, x_A, x_B , find K_{ab} .

Alice and Bob share a password. They want to use the password for authentication.

Properties:

- Passwords are small 1234.
- Keys P are large t3Bas51z5eeuWJITma6B45Vo.

Security requirements:

- Provide authentication.
- Survive online attacks.
- Prevent offline dictionary attacks.

Simple Password Exponential Key Exchange Protocol by Jablon '96

- $(\mathbb{G},\cdot)~$ group of prime order p
- $\mathcal{PW}\xspace$ password space $\subset \{0,1\}^*$
 - H hash function
 - $\{0,1\}^* \to \mathbb{G} \setminus \{\textit{id}\}$

^oThis description is simplified. The key should be $H'(A, B, x_A, x_B, K_{AB})$. We ignore this technicality in the talk.

Security of SPEKE:

What happens if Mallory **articipates** in the protocol?

- Online attack: Best attack is to guess a password DW*.
- Dictionary attack: An attacker cannot test different passwords in an offline phase. Testing pw^{**} requires solving DLOG($q_{pw^{**}}, q_{pw^{*}}$).

This work: Can SPEKE be generalized to isogeny-based group actions?

Isogeny-based Group Actions

An **Elliptic Curve** *E* over \mathbb{F}_{p^k} is defined by an equation

$$E: y^2 = x^3 + ax + b,$$

where $4a^3 + 27b^2 \neq 0$.

• Points of *E* form an additive group.

 \Rightarrow This group is used in the Diffie-Hellman protocol from before.

- An **isogeny** is a non-zero group homomorphism between elliptic curves $\phi: \mathbf{E} \to \mathbf{E'}$.
- For $p \nmid \ell$, an ℓ -isogeny is an isogeny with $\ker(\phi) \equiv \mathbb{Z}/\ell\mathbb{Z}$.

Isogeny Graph over \mathbb{F}_{419} with 3-, 5-, and 7- isogenies.

Vertices: supersingular elliptic curves over \mathbb{F}_p

- cardinality: $O(\sqrt{p})$
- labeled by Montgomery coefficient A

$$\Rightarrow E_A: y^2 = x^3 + Ax^2 + x$$

Edges: ℓ_i -isogenies for different small primes ℓ_1, \ldots, ℓ_n

- 2-regular for each ℓ_i
- directed graph
- dual isogenies allow to go back

Commutative Supersingular Isogeny Diffie-Hellman (CSIDH)

Key Idea: Alice and Bob take secret walks on the isogeny graphs. They only exchange the end vertices.

An example with p = 59. The starting vertex is fixed to **(0**).

Graph with 3- and 5- isogenies.

Group Action

A map $\star:\mathcal{G}\times\mathcal{X}\to\mathcal{X}$, with \mathcal{G} a group and \mathcal{X} a set, is a group action if:

- 1. *id* $\star x = x$ for all $x \in \mathcal{X}$ (identity),
- 2. $(g \circ h) \star x = g \star (h \star x)$ for all $g, h \in \mathcal{G}, x \in \mathcal{X}$ (compatibility).

Cryptographic assumptions

 ${\mathcal{G}}$ is commutative and the following problems are required to be hard.

- **DLOG** Given $x, y \in \mathcal{X}$, find $g \in \mathcal{G}$ with $y = g \star x$.
- **CDH** Given $x, y, z \in \mathcal{X}$, determine $w \in \mathcal{X}$ so that $w = \text{DLOG}(x, y) \star z$.

Diffie Hellman key exchange with group actions

Examples and special properties

Classical Diffie-Hellman

- $\mathcal{X} = \mathbb{G}$, a group of order *p*.
- $\mathcal{G} = (\mathbb{Z}/p\mathbb{Z})^*$.
- \star : exponentiation $(g, x) \mapsto x^g$.
- Given x^{g_1}, x^{g_2} , we can compute $x^{g_1+g_2} = x^{g_1} \cdot x^{g_2}$.

quantum poly-time attack (Shor)

CSIDH

- + $\mathcal{X}:$ vertices in the isogeny graph
- *G*: exponent vectors
- *: taking paths in the graph
- No group structure on X.
 best-known quantum attack is subexponential (Kuperberg)

• "Twisting" is believed to be hard.

• Twisting: Given $y = g \star \tilde{x}$, we can compute twist $(y) = g^{-1} \star \tilde{x}$ (here: \tilde{x} is $E_0: y^2 = x^3 + x$)

Translating SPEKE to group actions

How not to create a CSIDH-PAKE

Most currently used PAKE protocols are based on (classical) Diffie-Hellman key exchange. But the translation to the CSIDH group action has shown to be difficult.

Table 1. Survey of Diffie-Hellman-based PAKEs schemes and their translation toisogeny-based problems

DH PAKE	Safe for Isogenies?	Comment
EKE [5]	×	Public keys are distinguishable from random bitstrings
SPEKE [30] Dragonfly [27]	?	Hashing to a public key is difficult
PAK [8] J-PAKE [26]	×	Public keys are not commutative to achieve vanishing effect

Figure 1: "How not to create an Isogeny-Based PAKE (AJKLST, ACNS'20)

- $(\mathcal{G},\mathcal{X},\star)$ cryptographic group action
 - $\mathcal{PW}\xspace$ password space $\subset \{0,1\}^*$
 - H hash function $\{0,1\}^* \to \mathcal{X}$

Two problems when $(\mathcal{G}, \mathcal{X}, \star)$ is the CSIDH group action:

- **X** We need a secure hash function $H : \{0, 1\}^* \to \mathcal{X}$.
 - This is an open problem (Failing to hash into supersingular isogeny graphs, BBDFGKMPSSTVVWZ, Eprint '22)
- X The twisiting property makes the protocol insecure.

Possible attempt

It is easy to define a hash function into the group

 $H': \{0,1\}^* o \mathcal{G}, \quad \mathsf{pw} \mapsto g_{\mathsf{pw}}.$

Then define

$$H: \{0,1\}^* \to \mathcal{X}, \quad \mathsf{pw} \mapsto g_{\mathsf{pw}} \star \tilde{x}.$$

- X This hash function is not considered <u>secure</u>. Here, secure means no information about the DLOG of an element.
- ▲ There is an offline dictionary attack against the resulting PAKE protocol. Note: This kind of hash function can also not be used in the classical SPEKE protocol.

Idea: Replace the hash function by a bit-by-bit approach We fix two element $x_0, x_1 \in \mathcal{X}$ (crs), and $\mathcal{PW} = \{0, 1\}^m$.

Security

- Security against passive adversaries can be reduced to (strong) CDH.
- X This does not solve Problem 2 (twisting) yet!

Problem 2: Twists in CSIDH

There is an offline dictionary attack against both GA-SPEKE-0 (also applies to GA-SPEKE-1).

After this execution of the protocol, Mallory can test all passwords $pw \in PW$ until finding the correct session key K_{ab} .

First solution to problem 2: Com-GA-PAKE

Com = Commitment: Bob cannot choose *x*^{*B*} depending on the Alice's message.

Second solution to problem 2: X-GA-PAKE

X = **Cross-Terms:** An adversary can compute only 2 of 3 possible cross-terms.

	Com-GA-PAKE	X-GA-PAKE
Total Communication	2 <i>m</i> + 1	4 <i>m</i>
Total Computation	4m	10 <i>m</i>
No of Rounds	3	1
Security Assumption	CDH	Square-Inverse
Tight	no	yes

Parameter Choice: e.g. m = 128 and $|\mathcal{PW}| \subset \{0, 1\}^m$.

X-GA-PAKE and **Com-GA-PAKE** are the first direct constructions and provably secure PAKE protocols based on CSIDH.

- Twists are important in the security analysis.
- Hash function into the set ${\mathcal X}$ can be replaced with a bit-by-bit approach.

Further Optimizations

- Decrease computational cost by increasing the size of the crs.
- Double the crs using twists.
- Recent improvements by Ishibashi, Yoneyama [ACISP '23].

Thank you!

Literature

Abdalla, Eisenhofer, Kiltz, Kunzweiler, Riepel: Password-authenticated key exchange from group actions. *CRYPTO 2022*. https://eprint.iacr.org/2022/770.pdf

Alamati, De Feo, Montgomery, Patranabis: Cryptographic Group Actions and Applications. *ASIACRYPT 2020.* https://eprint.iacr.org/2020/1188

Azarderakhsh, Jao, Koziel, LeGrow, Soukharev, Taraskin: How Not to Create an Isogeny-Based PAKE. ACNS 2020. https://eprint.iacr.org/2020/361.pdf

Castryck, Lange, Martindale, Panny, Renes: CSIDH: an efficient post-quantum commutative group action. *ASIACRYPT 2018*. https://eprint.iacr.org/2018/383.pdf

Couveignes: Hard homogeneous spaces. Eprint. https://eprint.iacr.org/2006/291.pdf

Jablon: Strong password-only authenticated key exchange. ACM SIGCOMM 1996. https://dl.acm.org/doi/pdf/10.1145/242896.242897