Efficient Computation of $\left(3^{n}, 3^{n}\right)$-isogenies

AfricaCrypt 2023, Sousse

Thomas Decru ${ }^{1}$ \& Sabrina Kunzweiler ${ }^{2}$
July 21st, 2023
${ }^{1}$ imec-COSIC, KU Leuven, België
${ }^{2}$ Inria, IMB, Bordeaux, France

What are $\left(3^{n}, 3^{n}\right)$-isogenies?

Dimension 1: Elliptic curves

- 3^{n}-isogeny: chain of 3-isogenies, kernel $K \cong C_{3^{n}}$.

What are $\left(3^{n}, 3^{n}\right)$-isogenies?

Dimension 2: Principally polarized abelian surfaces (p.p.a.s.)

- $\left(3^{n}, 3^{n}\right)$-isogeny: chain of $(3,3)$-isogenies, kernel $K \cong C_{3^{n}} \times C_{3^{n}}$

Why are $\left(3^{n}, 3^{n}\right)$-isogenies interesting (for crypto)?

SIDH

Retrieving Bob's secret
\triangleright based on
$\left(2^{m}, 2^{m}\right)$-isogenies
$\triangleright 9$ sec (SIKEp217) - 1 h
(SIKEp751)

EuroCrypt 2023:

- Key recovery attack on SIDH (Castryk-Decru; Maino-Martindale-Panny-PopeWesolowski; Robert)
- Algorithmic prerequisite: isogeny computations in higher dimension.

Retrieving Alice's secret
\triangleright based on
$\left(3^{n}, 3^{n}\right)$-isogenies
\triangleright timing: ?

State-of-the-art of (3,3)-formulae

Four types of (3,3)-isogenies

1. Generic:
\checkmark Explicit Formulae [Bruin-Flynn-Testa '14]
x Non-optimized (37.500 mult. for point evaluation)
2. Splitting and 3. Gluing:
\checkmark Compact parametrization
[Bröker, Howe, Lauter, Stevenhagen
'15]
x Explicit maps only on the level of curves (not surfaces)
3. Product:
x not explicitly discussed anywhere

Our Contributions

Generic Case (1.):

BFT provide a three-parameter (r, s, t) parametrization.

Isogeny evaluation $x \mapsto y$ with $x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ is represented by matrix multiplication: ${ }^{1}$

$$
\left(\begin{array}{c}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right)=\left(\begin{array}{ccc}
a_{1} & \ldots & a_{20} \\
\vdots & & \vdots \\
d_{1} & \ldots & d_{20}
\end{array}\right) \cdot\left(\begin{array}{c}
x_{4}^{3} \\
x_{4}^{2} \\
\vdots \\
x_{3}^{3}
\end{array}\right) \quad \begin{gathered}
\text { Formulae for the matrix entries } \\
\text { in terms of } r, s, t \text { are known, } \\
\text { but expensive! }
\end{gathered}
$$

Tricks for simplifying the formulae:

- Find 282 (at most quartic) relations among matrix entries and curve coefficients.
- Formulate the problem as a Mixed Integer Linear Program (MILP).

[^0]
Our Contributions

Example: Matrix entry a_{5} (coefficient of $x_{3}^{2} x_{4}$)
(4) * $\left(r^{\wedge} 6^{*} s^{\wedge} 4^{*} t^{\wedge} 2+r^{\wedge} 6^{*} s^{\wedge} 4^{*} t-9^{*} r^{\wedge} 5^{*} s^{\wedge} 4^{*} t^{\wedge} 2+3^{*} r^{\wedge} 4^{*} s^{\wedge} 4^{*} t^{\wedge} 3\right.$ $\mathrm{r}^{\wedge} 3^{*} \mathrm{~s}^{\wedge} 4^{*} \mathrm{t}^{\wedge} 4+\mathrm{r}^{\wedge} 6^{*} \mathrm{~s}^{\wedge} 4+2^{*} \mathrm{r}^{\wedge} 6^{*} \mathrm{~s}^{\wedge} 3^{*} \mathrm{t}-9^{*} \mathrm{r}^{\wedge} 5^{*} \mathrm{~s}^{\wedge} 4^{*} \mathrm{t}+39^{*} \mathrm{r}^{\wedge} 4^{*} \mathrm{~s}^{\wedge} 4^{*} \mathrm{t}^{\wedge} 2$ $29 * r^{\wedge} 3^{*} s^{\wedge} 4^{*} t^{\wedge} 3+18^{*} r^{\wedge} 2^{*} s^{\wedge} 4^{*} t^{\wedge} 4-6 * r^{*} s^{\wedge} 4^{*} t^{\wedge} 5+s^{\wedge} 4^{*} t^{\wedge} 6-r^{\wedge} 6^{*} s^{\wedge} 3-$ $9^{*} r^{\wedge} 5^{*} s^{\wedge} 3^{*} t+3^{*} r^{\wedge} 4^{*} s^{\wedge} 4^{*} t+3^{*} r^{\wedge} 4^{*} s^{\wedge} 3^{*} t^{\wedge} 2-29^{*} r^{\wedge} 3^{*} s^{\wedge} 4^{*} t^{\wedge} 2$ $2^{*} r^{\wedge} 3^{*} s^{\wedge} 3^{*} t^{\wedge} 3+9^{*} r^{\wedge} 2^{*} s^{\wedge} 4^{*} t^{\wedge} 3-3^{*} r^{*} s^{\wedge} 4^{*} t^{\wedge} 4+r^{\wedge} 6^{*} s^{\wedge} 2+39^{*} r^{\wedge} 4^{*} s^{\wedge} 3^{*} t-$ $r^{\wedge} 3^{*} s^{\wedge} 4^{*} t-57^{*} r^{\wedge} 3^{*} s^{\wedge} 3^{*} t^{\wedge} 2+18^{*} r^{\wedge} 2^{*} s^{\wedge} 4^{*} t^{\wedge} 2+51^{*} r^{\wedge} 2^{*} s^{\wedge} 3^{*} t^{\wedge} 3-$ $3^{*} r^{*} s^{\wedge} 4^{*} t^{\wedge} 3-21^{*} r^{*} s^{\wedge} 3^{*} t^{\wedge} 4+s^{\wedge} 4^{*} t^{\wedge} 4+4^{*} s^{\wedge} 3^{*} t^{\wedge} 5-3^{*} r^{\wedge} 4^{*} s^{\wedge} 3-$ $3^{*} r^{\wedge} 4^{*} s^{\wedge} 2^{*} t-28^{*} r^{\wedge} 3^{*} s^{\wedge} 3^{*} t+33^{*} r^{\wedge} 2^{*} s^{\wedge} 3^{*} t^{\wedge} 2-6^{*} r^{*} s^{\wedge} 4^{*} t^{\wedge} 2$ $18^{*} r^{*} s^{\wedge} 3^{*} t^{\wedge} 3+2^{*} s^{\wedge} 3^{*} t^{\wedge} 4+3^{*} r^{\wedge} 4^{*} s^{\wedge} 2+r^{\wedge} 3^{*} s^{\wedge} 3-28^{*} r^{\wedge} 3^{*} s^{\wedge} 2^{*} t+$ $15^{*} r^{\wedge} 2^{*} s^{\wedge} 3^{*} t+48^{*} r^{\wedge} 2^{*} s^{\wedge} 2^{*} t^{\wedge} 2-15^{*} r^{*} s^{\wedge} 3^{*} t^{\wedge} 2+s^{\wedge} 4^{*} t^{\wedge} 2-27^{*} r^{*} s^{\wedge} 2^{*} t^{\wedge} 3$ $+5^{*} \mathrm{~s}^{\wedge} 3^{*} \mathrm{t}^{\wedge} 3+6^{*} \mathrm{~s}^{\wedge} 2^{*} \mathrm{t}^{\wedge} 4-3^{*} \mathrm{r}^{\wedge} 4^{*} \mathrm{~s}+2^{*} \mathrm{r}^{\wedge} 3^{*} \mathrm{~s}^{*} \mathrm{t}+21^{*} \mathrm{r}^{\wedge} 2^{*} \mathrm{~s}^{\wedge} 2^{*} \mathrm{t}-$ $3^{*} r^{*} s^{\wedge} 3^{*} t-24^{*} r^{*} s^{\wedge} 2^{*} t^{\wedge} 2+2^{*} s^{\wedge} 3^{*} t^{\wedge} 2+5^{*} s^{\wedge} 2^{*} t^{\wedge} 3+15^{*} r^{\wedge} 2^{*} s^{*} t$ $9^{*} r^{*} s^{\wedge} 2^{*} t-15^{*} r^{*} s^{*} t^{\wedge} 2+6^{*} s^{\wedge} 2^{*} t^{\wedge} 2+4^{*} s^{*} t^{\wedge} 3+r^{\wedge} 3-9^{*} r^{*} s^{*} t+s^{\wedge} 2^{*} t+$ $\left.4^{*} s^{*} t^{\wedge} 2-3^{*} r^{*} t+2^{*} s^{*} t+t^{\wedge} 2+t\right)$

Original formula with r, s, t.

$$
4\left(f_{6} \Delta-g_{6}\right)
$$

New formula with curve $\Rightarrow \quad$ coefficients f_{0}, \ldots, f_{6},
g_{\circ}, \ldots, g_{6}.

In total: Our new formulae reduce the number of multiplications by 94%.

Our Contributions

All other cases

(2.-4.):

\checkmark We derive compact and explicit formulae on the level of Kummer surfaces, Jacobians or elliptic curves (as needed).

Code https://github.com/KULeuven-COSIC/3_3_isogenies

- Implementation of our formulae and the resulting algorithm to compute $\left(3^{n}, 3^{n}\right)$-isogenies in magma.
- Symbolic verification of our results.

Applications

Cryptanalysis

- SIDH attack: We can now also retrieve Alice's secret key! Only 11 seconds for SIKEp751 parameters.

New Protocols

- 2-dimensional CGL hash function.
- Constructive use of the SIDH attack, such as: FESTA, SQISign-HD, ...

Thank you!

[^0]: ${ }^{1}$ Technical remark: Computations are done on the Kummer surface.

