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Introduction

Public key exchange:
Alice and Bob want to create
a secure session key.
They can only communicate
over a public channel.

Alice (a) Bob (b)

xA = ga = a ⋆ x̃
xB = gb = b ⋆ x̃xaB a ⋆ xB xbA b ⋆ xA

Classical Solution:
Diffie-Hellman key exchange based on
groups
e.g. Z/pZ, elliptic curves.

! Shor’s algorithm solves Discrete Logarithm
in quantum polynomial time.

Post-quantum candidate:
Commutative Supersingular Isogeny Diffie-
Hellman (CSIDH) key exchange based on
group actions.
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Isogeny-based Group Actions



Elliptic Curves

An Elliptic Curve E over Fpk is
defined by an equation

E : y2 = x3 + ax + b,

where 4a3 + 27b2 ̸= 0.

P

Q

Q+ P

ϕ

2-isogeny

• Points of E form an additive group.
This group is used in the classical Diffie-Hellman protocol.

• An isogeny is a non-zero group homomorphism between elliptic curves ϕ : E→ E′.
• For p ∤ ℓ, an ℓ-isogeny is an isogeny with ker(ϕ) ≡ Z/ℓZ.

Isogenies are the basis for a post-quantum Diffie-Hellman protocol.
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CSIDH [CLMPR, AsiaCrypt’18] Isogeny Graph

Isogeny Graph over F419 with 3-,
5-, and 7- isogenies.

Vertices: supersingular elliptic curves over Fp
• cardinality: O(√p)
• labeled by Montgomery coefficient A
⇒ EA : y2 = x3 + Ax2 + x

Edges: ℓi-isogenies for different small primes
ℓ1, . . . , ℓn

• 2-regular for each ℓi

• directed graph
• dual isogenies allow to go back
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Commutative Supersingular Isogeny Diffie-Hellman (CSIDH)

Key Idea: Alice and Bob take secret walks on the isogeny graphs.
They only exchange the end vertices.

An example with p = 59. The starting vertex is fixed to 0 .

Alice: a = (2,−1) Bob: b = (−1,−2)

⇒ xA = 6 ⇒ xB = 28

xA= 6

xB = 28

Kab = 11
Graph with 3- and 5- isogenies.
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Abstract view on CSIDH: Cryptographic group actions [ADMP, AsiaCrypt ’20].

Group Action
A map ⋆ : G × X → X , with G a group
and X a set, is a group action if:

1. id ⋆x = x for all x ∈ X (identity),
2. (g ◦ h) ⋆ x = g ⋆ (h ⋆ x) for all
g,h ∈ G, x ∈ X (compatibility).

Cryptographic assumptions
G is commutative and the following
problems are required to be hard.
• DLOG Given x, y ∈ X , find g ∈ G

with y = g ⋆ x.
• CDH Given x, y, z ∈ X , determine
w ∈ X so that w = DLOG(x, y) ⋆ z.

Diffie Hellman key exchange with group actions

Alice (a ∈ G) Bob (b ∈ G)

xA = a ⋆ x̃
xB = b ⋆ x̃KAB = a ⋆ xB KAB = b ⋆ xA
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Restricted Effective Group Actions (REGA)

CSIDH as a cryptographic group action (G,X , ⋆)

Formally Concretely

X supersingular elliptic curves over Fp vertices in the isogeny graph
G the class group cl(O) exponent vectors
⋆ isogenies of elliptic curves paths in the graph

Random Sampling:
We fix g1, . . . ,gn ∈ G (the colors) and sample

g =
∏
geii ← G

with (e1, . . . , en)← {−m, . . . ,m}n.

With a good choice for g1, . . . ,gn and m,
this sampling is expected to be close to
uniform.

Restricted Effective Group Action (REGA)
Notation: e ⋆ x :=

∏
geii ⋆ x

for e = (e1, . . . , en) ∈ Zn.
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Security assumptions in CSIDH



Different DLOG Assumptions

GA− DLOG
Given x, y ∈ X , find g ∈ G with
y = g ⋆ x

Given vertices in the isogeny
graph, find an isogeny connect-
ing them.1

REGA− DLOG
Given x, y ∈ X , find a (small)
exponent vector (e1, . . . , en)
with y =

∏
geii ⋆ x

Given vertices in the isogeny
graph, find a (short) path con-
necting them.

1Here, one can also use more general edges not present in ”our” isogeny graph.
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Attacks on REGA-DLOG

Given x, y ∈ X , find small e ∈ Zn, so that y = e ⋆ x.

Classic Quantum

Pollard-style random walk Kuperberg
O(
√
N) 2O(

√
log N)

Meet-in-the-middle 2 Grover / Claw finding
O(
√
Nm) O( 3

√
Nm)

Notation: N = #G and
Nm = #{−m, . . . ,m}n =
(2m+ 1)n.

Idea Nm ≪ N
• Smaller secret keys
• Faster computations

2In practice, O
(
N3/4
m√
W

)
with Parallel Collision Search (PCS) is more realistic. More details later.
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Ternary key spaces (m = 1)

Instantiation proposed in the SQALE of CSIDH ( by Chávez-Saab, Chi-Domı́nguez, Jaques,
Rodrı́guez-Henrı́quez ’22)

NIST Level 1: p ≈ 24096, Nm = 3139 ∼= 2220 ≪ N = 22048.
Starting vertex is fixed to x0.

Alice: a = (0,−1, . . . ,−1) Bob: b = (1, 1, . . . ,−1)

⇒ xA =
∏
gaii ⋆ x0 ⇒ xB =

∏
gbii ⋆ x0

xA

xB

xab =
∏
gai+bi ⋆ x0 imagine a graph with 139 colors
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Refined (classical) security
analysis for CSIDH with ternary
key spaces



Warm-up: Golden Collision Search

Given x, y ∈ X , find e ∈ Sn = {−1,0, 1}n, so that y = e ⋆ x.

• Write Sn,1 = {−1,0, 1}n/2 × {0}n/2, and Sn,2 = {0}n/2 × {−1,0, 1}n/2.
⇒ Each e ∈ Sn has a unique representation e = e1 + e2 with ei ∈ Sn,i.

• For a hash function H : {0, 1}∗ → Sn/2, define fi : Sn,i → Sn/2 with

f1 : e 7→ H(e ⋆ x), f2 : e 7→ H(−e ⋆ y).

For y = e ⋆ x and e = e1 + e2, we have f1(e1) = f2(e2), the golden collision.

• In total: ≈ 3n/2 =
√
Nm collisions between f1 and f2.

⇒ Parallel Collision Search (PCS): Finds W collisions in time T = Õ
(√√

Nm ·W
)

with memory M = Õ(W).
⇒ Running PCS O(

√
Nm/W) times, we find the golden collision.

In total: T = Õ(N3/4
m /
√
W), M = Õ(W). 10



First representation-based approach I

Given x, y ∈ X , find e ∈ Sn = {−1,0, 1}n, so that y = e ⋆ x.
Simplifying assumption: #{i | ei = a} = n/3 for a ∈ {−1,0, 1}.

• For a parameter α ∈ (0, 1), define:

Tn(α) = {e ∈ Sn | #{i | ei = a} = α · n for a = ±1}.

Note: e ∈ Tn(1/3).
⇒ Each e ∈ Tn(1/3) has r different representations e = e1 + e2 with e1, e2 ∈ Tn(α),
where

r =
(
n/3
n/6

)
·
(

n/3
ϵ, ϵ,n/3− 2ϵ

)
, ϵ = (α− 1/6)n.

• For a hash function H : {0, 1}∗ → Tn(α), define fi : Tn(α)→ Tn(α) with

f1 : e 7→ H(e ⋆ x), f2 : e 7→ H(−e ⋆ y).
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First representation-based approach II

For y = e ⋆ x and e = e1 + e2 one of the r representations, we have f1(e1) = f2(e2),
a good collision.

• In total: ≈ #Tn(α) =
( n
αn,αn,(1−2α)n

)
between f1 and f2.

⇒ PCS: Finds W collisions in time T = Õ
(√

#Tn(α) ·W
)

with memory M = Õ(W).

⇒ Running PCS O(#Tn(α)/r) times, we expect to find one of the good collisions.

In total: T = Õ((#Tn(α))3/2/(r
√
W)), M = Õ(W).

• Given W, the optimal value for α is determined by numerical methods.
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New time-memory trade-offs for ternary keys
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Trep = Õ(30.675n) < Õ(30.75n) = TGCS.
• M ≤ 30.22n:
Trep = Õ(30.675n/

√
M).

• M ≥ 30.265n:
no more improvements.
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First improvement: Partial representations

Idea: Mix of standard GCS and the first representation-based approach when M large.

• For a parameter δ ∈ (0, 1), let:

e = e1 + e2 = (a0,0, c0) + (0,a1, c1) = (a0,a1︸ ︷︷ ︸
(1−δ)n

, c0 + c1︸ ︷︷ ︸
δn

)

with a0,a1 ∈ T(1−δ)n/2(1/3), c0, c1 ∈ Tδn(α). 3

• Similar to before, we define functions

f1 : T(1−δ)n/2(1/3)× {0}(1−δ)n/2 × Tδn(α)→ T(1−δ)n/2(1/3)× Tδn(α),
f2 : {0}(1−δ)n/2 × T(1−δ)n/2(1/3)× Tδn(α)→ T(1−δ)n/2(1/3)× Tδn(α).

3This asserts proportional distribution of 1,−1 among the three segments which can be obtained by random
permutations of the indices.
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Time-memory trade-offs with partial representations
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• Partial representations provide a
smooth interpolation between GCS
and the first representation-based
approach.

• 30.25n ≤ M ≤ 30.4n :
partial representations are better
than all previous methods.

• Further improvement by increasing
the number of representations
(see our paper)
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Consequences for CSIDH with ternary keys

Example: NIST security level 1
M = 280 ≈ 350.47, T = 2128 ≈ 380.76

Suggested parameters in the SQALE of CSIDH
n = 139, i.e. secret key space {−1,0, 1}139.
• M ≈ 30.36n

• Increased representation attack:
T ≈ 30.53n < 30.57n = TGCS

⇒ Security loss of around 8 bits.

Similarly, for the parameters suggested for level 2 and level 3 security, we show a
security loss of 4.57 bits and 12.75 bits, respectively.
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Conclusion



Summary

Summary

• Representation-based techniques can be applied to attack CSIDH.
• This is relevant for CSIDH designs with small secret keys.

Further results in our paper
Analysis for different key spaces suggested in the CSIDH setting:

• ternary: {0, 1, 2}n, {−2,0, 2}n

• non-ternary: {−m, . . . ,m}n for m ∈ {2, 3}.

Thanks for your attention!
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