Low Memory Attacks on Small Key CSIDH

Talk at Université de Picardie Jules Verne

Sabrina Kunzweiler Inria, Institut de Mathématiques Bordeaux March 25, 2024

(joint work with Jesús-Javier Chi-Dominguez, Andre Esser and Alexander May)

Public key exchange:

Alice and Bob want to create a secure session key. They can only communicate over a public channel. Classical Solution: Diffie-Hellman key exchange based on groups e.g. $\mathbb{Z}/p\mathbb{Z}$, elliptic curves.

! Shor's algorithm solves Discrete Logarithm in *quantum* polynomial time.

Post-quantum candidate: Commutative Supersingular Isogeny Diffie-Hellman (CSIDH) key exchange based on group actions.

Isogeny-based Group Actions

An **Elliptic Curve** E over \mathbb{F}_{p^k} is defined by an equation

 $E: y^2 = x^3 + ax + b,$

where $4a^3 + 27b^2 \neq 0$.

• Points of *E* form an additive group.

This group is used in the classical Diffie-Hellman protocol.

- An **isogeny** is a non-zero group homomorphism between elliptic curves $\phi: E \rightarrow E'$.
- For $p \nmid \ell$, an ℓ -isogeny is an isogeny with ker $(\phi) \equiv \mathbb{Z}/\ell\mathbb{Z}$. Isogenies are the basis for a post-quantum Diffie-Hellman protocol.

Isogeny Graph over \mathbb{F}_{419} with 3-, 5-, and 7- isogenies.

Vertices: supersingular elliptic curves over \mathbb{F}_p

- cardinality: $O(\sqrt{p})$
- labeled by Montgomery coefficient A

 $\Rightarrow E_A: y^2 = x^3 + Ax^2 + x$

Edges: ℓ_i -isogenies for different small primes ℓ_1, \ldots, ℓ_n

- 2-regular for each ℓ_i
- directed graph
- dual isogenies allow to go back

Commutative Supersingular Isogeny Diffie-Hellman (CSIDH)

Key Idea: Alice and Bob take secret walks on the isogeny graphs. They only exchange the end vertices.

An example with p = 59. The starting vertex is fixed to **(0**).

Graph with 3- and 5- isogenies.

Group Action

A map $\star:\mathcal{G}\times\mathcal{X}\to\mathcal{X}$, with \mathcal{G} a group and \mathcal{X} a set, is a group action if:

- 1. *id* $\star x = x$ for all $x \in \mathcal{X}$ (identity),
- 2. $(g \circ h) \star x = g \star (h \star x)$ for all $g, h \in \mathcal{G}, x \in \mathcal{X}$ (compatibility).

Cryptographic assumptions

 ${\mathcal{G}}$ is commutative and the following problems are required to be hard.

- **DLOG** Given $x, y \in \mathcal{X}$, find $g \in \mathcal{G}$ with $y = g \star x$.
- **CDH** Given $x, y, z \in \mathcal{X}$, determine $w \in \mathcal{X}$ so that $w = \text{DLOG}(x, y) \star z$.

Diffie Hellman key exchange with group actions

CSIDH as a cryptographic group action $(\mathcal{G},\mathcal{X},\star)$

	Formally	Concretely
X G	supersingular elliptic curves over \mathbb{F}_p the class group cl(\mathcal{O})	vertices in the isogeny graph exponent vectors
*	isogenies of elliptic curves	paths in the graph

Random Sampling:

We fix $g_1,\ldots,g_n\in\mathcal{G}$ (the colors) and sample

$$g = \prod g_i^{e_i} \leftarrow \mathcal{G}$$

with $(e_1,\ldots,e_n) \leftarrow \{-m,\ldots,m\}^n$.

With a good choice for g_1, \ldots, g_n and m, this sampling is expected to be close to uniform.

Restricted Effective Group Action (REGA) Notation: $e \star x := \prod g_i^{e_i} \star x$ for $e = (e_1, \dots, e_n) \in \mathbb{Z}^n$.

Security assumptions in CSIDH

GA - DLOGGiven $x, y \in \mathcal{X}$, find $g \in \mathcal{G}$ with
 $y = g \star x$ Given vertices in the isogeny
graph, find an isogeny connect-
ing them.1

REGA - DLOGGiven $x, y \in \mathcal{X}$, find a (small)Given vertices in the isogeny
exponent vector (e_1, \ldots, e_n) Given vertices in the isogeny
graph, find a (short) path con-
with $y = \prod g_i^{e_i} \star x$

¹Here, one can also use more general edges not present in "our" isogeny graph.

Given $x, y \in \mathcal{X}$, find small $e \in \mathbb{Z}^n$, so that $y = e \star x$.

Notation: $N = #\mathcal{G}$ and $N_m = #\{-m, \dots, m\}^n = (2m + 1)^n$.

Classic	Quantum	
Pollard-style random walk $\mathcal{O}(\sqrt{N})$	Kuperberg $2^{\mathcal{O}(\sqrt{\log N})}$	Idea $N_m \ll N$ • Smaller secret keys
Meet-in-the-middle ²	Grover / Claw finding	Faster computations
$\mathcal{O}(\sqrt{N_m})$	$\mathcal{O}(\sqrt[3]{N_m})$	

```
<sup>2</sup>In practice, \mathcal{O}\left(\frac{N_m^{3/4}}{\sqrt{W}}\right) with Parallel Collision Search (PCS) is more realistic. More details later.
```

Ternary key spaces (m = 1)

Instantiation proposed in the *SQALE of CSIDH* (by Chávez-Saab, Chi-Domínguez, Jaques, Rodríguez-Henríquez '22)

NIST Level 1: $p \approx 2^{4096}$, $N_m = 3^{139} \cong 2^{220} \ll N = 2^{2048}$. Starting vertex is fixed to x_0 .

imagine a graph with 139 colors

Refined (classical) security analysis for CSIDH with ternary key spaces Given $x, y \in \mathcal{X}$, find $e \in S_n = \{-1, 0, 1\}^n$, so that $y = e \star x$.

- Write $S_{n,1} = \{-1, 0, 1\}^{n/2} \times \{0\}^{n/2}$, and $S_{n,2} = \{0\}^{n/2} \times \{-1, 0, 1\}^{n/2}$.
 - \Rightarrow Each $e \in S_n$ has a unique representation $e = e_1 + e_2$ with $e_i \in S_{n,i}$.
- For a hash function $H : \{0, 1\}^* \to S_{n/2}$, define $f_i : S_{n,i} \to S_{n/2}$ with

 $f_1: e \mapsto H(e \star x), \quad f_2: e \mapsto H(-e \star y).$

For $y = e \star x$ and $e = e_1 + e_2$, we have $f_1(e_1) = f_2(e_2)$, the golden collision.

• In total: $\approx 3^{n/2} = \sqrt{N_m}$ collisions between f_1 and f_2 . \Rightarrow **Parallel Collision Search (PCS)**: Finds W collisions in time $T = \tilde{\mathcal{O}}\left(\sqrt{\sqrt{N_m} \cdot W}\right)$ with memory $M = \tilde{\mathcal{O}}(W)$. \Rightarrow Running PCS $\mathcal{O}(\sqrt{N_m}/W)$ times, we find the golden collision.

In total:
$$T = \tilde{\mathcal{O}}(N_m^{3/4}/\sqrt{W}), \quad M = \tilde{\mathcal{O}}(W).$$
 ¹⁰

First representation-based approach I

Given $x, y \in \mathcal{X}$, find $e \in S_n = \{-1, 0, 1\}^n$, so that $y = e \star x$. Simplifying assumption: $\#\{i \mid e_i = a\} = n/3$ for $a \in \{-1, 0, 1\}$.

• For a parameter $\alpha \in (0, 1)$, define:

$$T_n(\alpha) = \{ e \in S_n \mid \#\{i \mid e_i = a\} = \alpha \cdot n \text{ for } a = \pm 1 \}.$$

Note: $e \in T_n(1/3)$.

 \Rightarrow Each $e \in T_n(1/3)$ has r different representations $e = e_1 + e_2$ with $e_1, e_2 \in T_n(\alpha)$, where

$$r = {n/3 \choose n/6} \cdot {n/3 \choose \epsilon, \epsilon, n/3 - 2\epsilon}, \quad \epsilon = (\alpha - 1/6)n.$$

• For a hash function $H : \{0, 1\}^* \to T_n(\alpha)$, define $f_i : T_n(\alpha) \to T_n(\alpha)$ with

$$f_1: e \mapsto H(e \star x), \quad f_2: e \mapsto H(-e \star y).$$

For $y = e \star x$ and $e = e_1 + e_2$ one of the *r* representations, we have $f_1(e_1) = f_2(e_2)$, a good collision.

- In total: $\approx \#T_n(\alpha) = \binom{n}{(\alpha n, \alpha n, (1-2\alpha)n}$ between f_1 and f_2 .
 - \Rightarrow **PCS**: Finds *W* collisions in time $T = \tilde{O}\left(\sqrt{\#T_n(\alpha) \cdot W}\right)$ with memory $M = \tilde{O}(W)$.

 \Rightarrow Running PCS $\mathcal{O}(\#T_n(\alpha)/r)$ times, we expect to find one of the good collisions.

In total:
$$T = \tilde{\mathcal{O}}((\#T_n(\alpha))^{3/2}/(r\sqrt{W})), \quad M = \tilde{\mathcal{O}}(W).$$

- Given W, the optimal value for α is determined by numerical methods.

New time-memory trade-offs for ternary keys

- Memoryless version: $T_{rep} = \tilde{O}(3^{0.675n}) < \tilde{O}(3^{0.75n}) = T_{GCS}.$
- $M \leq 3^{0.22n}$: $T_{rep} = \tilde{O}(3^{0.675n}/\sqrt{M}).$

•
$$M \ge 3^{0.265n}$$
:
no more improvements.

First improvement: Partial representations

Idea: Mix of standard GCS and the first representation-based approach when M large.

• For a parameter $\delta \in (0, 1)$, let:

$$e = e_1 + e_2 = (a_0, 0, c_0) + (0, a_1, c_1) = (\underbrace{a_0, a_1}_{(1-\delta)n}, \underbrace{c_0 + c_1}_{\delta n})$$

with
$$a_0, a_1 \in T^{(1-\delta)n/2}(1/3), \ c_0, c_1 \in T^{\delta n}(\alpha).$$

• Similar to before, we define functions

$$\begin{split} f_1: T^{(1-\delta)n/2}(1/3) \times & \{\mathbf{0}\}^{(1-\delta)n/2} \quad \times T^{\delta n}(\alpha) \to T^{(1-\delta)n/2}(1/3) \times T^{\delta n}(\alpha), \\ f_2: & \{\mathbf{0}\}^{(1-\delta)n/2} \quad \times T^{(1-\delta)n/2}(1/3) \times T^{\delta n}(\alpha) \to T^{(1-\delta)n/2}(1/3) \times T^{\delta n}(\alpha). \end{split}$$

 $^{^{3}}$ This asserts proportional distribution of 1, -1 among the three segments which can be obtained by random permutations of the indices.

Time-memory trade-offs with partial representations

- Partial representations provide a smooth interpolation between GCS and the first representation-based approach.
- * $3^{o.25n} \le M \le 3^{o.4n}$: partial representations are better than all previous methods.
- Further improvement by increasing the number of representations (see our paper)

Consequences for CSIDH with ternary keys

Example: NIST security level 1

 $M=2^{80}\approx 3^{50.47},\ T=2^{128}\approx 3^{80.76}$

Suggested parameters in the SQALE of CSIDH

n = 139, i.e. secret key space $\{-1, 0, 1\}^{139}$.

- $M \approx 3^{0.36n}$
- Increased representation attack: $T \approx 3^{0.53n} < 3^{0.57n} = T_{GCS}$
- \Rightarrow Security loss of around 8 bits.

Similarly, for the parameters suggested for level 2 and level 3 security, we show a security loss of 4.57 bits and 12.75 bits, respectively.

Conclusion

Summary

- Representation-based techniques can be applied to attack CSIDH.
- This is relevant for CSIDH designs with small secret keys.

Further results in our paper

Analysis for different key spaces suggested in the CSIDH setting:

- ternary: $\{0, 1, 2\}^n$, $\{-2, 0, 2\}^n$
- non-ternary: $\{-m, \ldots, m\}^n$ for $m \in \{2, 3\}$.

Thanks for your attention!